4.1. Riemannian curvature tensor with constant sectional curvature. Let (M,g) be a Riemannian manifold with constant sectional curvature $\sec(E) = \kappa \in \mathbb{R}$ for all $E \in G_2(TM)$. Show that

$$R(X,Y)W = \kappa \left(g(Y,W)X - g(X,W)Y \right).$$

- **4.2. Ricci curvature.** Let (M, g) be a 3-dimensional Riemannian manifold. Show the following:
 - 1. The Ricci curvature ric uniquely determines the Riemannian curvature tensor R;
 - 2. If M is an Einstein manifold, then the sectional curvature sec is constant.
- **4.3. Divergence and Laplacian.** Let (M,g) be a Riemannian manifold with Levi-Civita connection D. The divergence $\operatorname{div}(Y)$ of a vector field $Y \in \Gamma(M)$ is the contraction of the (1,1)-tensor field $DY \colon X \mapsto D_X Y$ and the Laplacian $\Delta \colon C^{\infty}(M) \to C^{\infty}(M)$ is defined by $\Delta f := \operatorname{div}(\operatorname{grad} f)$. Show that:
 - 1. $\operatorname{div}(fY) = Y(f) + f \operatorname{div} Y;$
 - 2. $\Delta(fg) = f\Delta g + g\Delta f + 2\langle \operatorname{grad} f, \operatorname{grad} g \rangle;$
 - 3. Compute Δf in local coordinates.